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Abstract

This appendix details: (i) a version of the model with general preferences and internal

ES in the intermediary; (ii) the model solution via Lubik and Schorfheide (2003); and (iii)

the calibration exercise.

1. The Model and Equilibrium

1.1. The Model

Time is discrete and the horizon is infinite. The economy is populated by a continuum of

households indexed by i ∈ [0, 1] which supply differentiated labor, a continuum of industries

indexed by j ∈ [0, 1] which produce differentiated goods and have a large number of perfectly-

competitive firms within each industry, a financial intermediary, and a monetary authority.

The model contains enough symmetry to allow the analysis to focus on a representative

household i, and a single firm in representative industry j.
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Households

The preferences of household i are given by

(1) E0
∞∑
t=0

βtu
(
ci (t) , hi (t)

)
,

where ci (t) is a composite consumption good, hi (t) =
∫ 1
0
hij (t) dj is labor supply across

industries, and β ∈ (0, 1) is the discount rate. Composite consumption is an (Armington)

aggregate of differentiated goods given by the CES specification

(2) ci (t) =

[∫ 1

0

ϕ
1
$
j c

i
j (t)

$−1
$ dj

] $
$−1

,

where cij (t) denotes household i’s consumption of good j and $ ≥ 0 denotes the constant

elasticity of substitution across goods. The parameter ϕj denotes the weight associated with

good j in the consumption set, and must satisfy
∫ 1
0
ϕjdj = 1.

Household i begins period t with physical capital ki (t) and nominal currency M i (t).

Every household receives a lump-sum transfer T (t) of currency from the monetary authority,

and buys / sells nominal bonds Bi (t) which are zero in net supply and earn a gross nominal

return 1+R (t). The household then deposits di (t) of its capital into a financial intermediary

earning a gross real return rd (t) , and lends ai (t) directly to firms earning a gross real return

r (t) . Therefore, ki (t) = ai (t) + di (t).

Both deposits and currency can be used to purchase consumption. As in the standard

cash-in-advance model, previously held currency can costlessly purchase consumption goods.

Deposits are chosen at the beginning of the period and pay interest, but bear a fixed real

cost γ for each consumption good purchased. This cost can be interpreted as a per-check

processing cost.
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The use of money balances deliver the conditions

M i (t) + T (t)−Bi (t) ≥
∫ 1
0
1Jm (j)Pj (t) cij (t) dj,(3)

Pk (t) di (t) ≥
∫ 1
0
1Jd (j)Pj (t) cij (t) dj,(4)

where Pj (t) denotes the price of consumption good j, Pk (t) is the price of capital (and capital

deposits), and Jm and Jd are subsets of [0, 1] which denote the good types purchased with

currency and deposits, respectively. The indicator function 1Jm (j) (1Jd (j)) equals one if a

particular good j is a member of Jm (Jd), and zero otherwise.

Household i is a monopoly supplier of type-i labor which is sold to all firms. Different

types of labor are imperfect substitutes in production, so labor is sold in a monopolistically-

competitive market: household i sets the nominal wage W i
j (t) offered to a representative

firm from industry j (henceforth, firm j) and supplies labor such that it satisfies firm j’s

demand taking all prices as given. It is assumed that the household faces a quadratic cost

to adjust its nominal wage as in Rotemberg (1982),

φ

2

[
W i
j (t)

πW i
j (t− 1)

− 1

]2
,

where φ > 0 governs the size of the real adjustment cost and π denotes the gross, long-run

inflation rate.

The flow budget constraint of household i is given by

∫ 1

0

Pj (t) cij (t) dj +M i (t+ 1) + Pk (t) ki (t+ 1) ≤(5) ∫ 1

0

W i
j (t)hij (t) dj + r (t)Pk (t) ai (t) + rd (t)Pk (t) di (t) +R (t)Bi (t) +M i (t) + T (t)

−Pk (t) γ

(∫ 1

0

1Jd (j) dj

)
− Pk (t)

∫ 1

0

φ

2

[
W i
j (t)

πW i
j (t− 1)

− 1

]2
dj

where γ
(∫ 1

0
1Jd (j) dj

)
denotes the total cost of using deposits.
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Production

A representative type-j firm hires differentiated labor from households and aggregates

them into a homogeneous labor input hj (t) using the CES technology:

(6) hj (t) =

(∫ 1

0

hij (t)
ξ−1
ξ di

) ξ
ξ−1

,

where ξ ≥ 0 denotes the elasticity of substitution between labor types.1

The production technology for type-j output is a CRS function of capital and homoge-

neous labor: yj (t) = f (z (t) , kj (t) , hj (t)) , where z (t) denotes exogenous total factor pro-

ductivity which is identical across firms and evolves according to z (t) = κz+ρzz (t− 1)+εz (t)

with εz (t) ∼ N (0, σ2z). Profits of a representative type-j firm are given by

(7) Pj (t) yj (t) + (1− δ − r (t))Pk (t) kj (t)−
∫ 1

0

W i
j (t)hij (t) di,

where Pj (t) is taken as given.

Financial Intermediaries

The financial intermediary accepts capital deposits from households and loans them to

firms. No financial frictions are assumed. As discussed in the text, a benefit of holding

deposits rather than currency is the earned interest rd, while a benefit of deposits relative to

direct capital investment is the ability to purchase consumption (for a processing cost γ).

The profit function of an intermediary is given by

(8) r (t) d (t)− rd (t) d (t)− C
(
d (t) , d(t)

)
,

where d (t) denotes real deposits, d(t) denotes real deposits of the entire intermediary sector,

1One could establish an equivalent environment where an additional production sector aggregates labor
and sells homogeneous labor units to good producing firms as in Erceg et al. (2000). Allowing firms to hire
heterogeneous labor is employed here simply to streamline the environment.
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and C
(
d (t) , d(t)

)
denotes real operating costs. Let C

(
d (t) , d̄(t)

)
= Γd (t) d̄(t)θ. The

intermediary takes r(t), rd(t) and d̄(t) as given and chooses d(t) to equate marginal costs

with benefits.

(9) rd (t) = r (t)− Γd̄(t)θ

The cost function of the intermediary exhibits ES for θ < 0 and (9) suggests that the rate

of returns on deposits is an increasing function of the aggregate amount of deposits (all else

constant).

1.2. Household i’s Generalized and Aggregated Problems

The generalized problem of household i can be stated as

max
∞∑
t=1

βt{u
[
ci (t) , hi (t)

]
+λi1 (t)

[
M i (t) + T (t)−

∫ 1
0
1Jm (j)Pj (t) cij (t) dj

]
+λi2 (t)

[
Pk (t) di (t)−

∫ 1
0
1Jd (j)Pj (t) cij (t) dj

]

+λi3 (t)


∫ 1
0
W i
j (t)hij (t) dj + r (t)Pk (t) [ki(t)− di(t)] + rd (t)Pk (t) di (t)

+M i (t) + T (t) +R (t)Bi (t)− Pk (t) γ
(∫ 1

0
1Jd (j) dj

)
− Pk (t)

∫ 1
0
φ
2

[
W i
j (t)

πW i
j (t−1)

− 1
]2
dj

−
∫ 1
0
Pj (t) cij (t) dj −M i (t+ 1)− Pk (t) ki (t+ 1)


 ,
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where ci (t) =
[∫

ϕ
1
$
j c

i
j(t)

$−1
$ dj

] $
$−1

. The first order conditions for choices of cij (t) ∀j ∈ Jm,

cij′ (t) ∀j′ ∈ Jd, di (t) , Bi (t) , M i (t+ 1) , ki (t+ 1) and W i
j (t) ∀j are given by

ucij (t)
(
ci (t)ϕj

) 1
$ = cij (t)

1
$ Pj (t)

[
λi1 (t) + λi3 (t)

]
, ∀j ∈ Jm,(10)

uci
j′

(t)
(
ci (t)ϕj′

) 1
$ = cij′ (t)

1
$ Pj′ (t)

[
λi2 (t) + λi3 (t)

]
, ∀j′ ∈ Jd,(11)

λi2 (t) = λi3 (t) [r (t)− rd (t)] ,(12)

λi1 (t) = λi3 (t)R (t) ,(13)

λi3 (t) = βE (t)
[
λi1 (t+ 1) + λi3 (t+ 1)

]
,(14)

λi3 (t) = βE (t) r (t+ 1)λi3 (t+ 1) ,(15)

and

uhij (t) ξhj (t)

(
Wj (t)

W i
j (t)

)ξ
− λi3 (t)

 (1− ξ)hj (t)W i
j (t)

(
Wj(t)

W i
j (t)

)ξ
−Pk (t)φ

[
W i
j (t)

πW i
j (t−1)

]
W i
j (t)

πW i
j (t−1)


= βE (t)λi3 (t+ 1)

[
Pk (t+ 1)φ

[
W i
j (t+ 1)

πW i
j (t)

]
W i
j (t+ 1)

πW i
j (t)

]
, ∀j.(16)

The aggregated problem of household i can be stated as

max

∞∑
t=1

βt{u
[
ci (t) , hi (t)

]
+λ̂

i

1 (t)
[
M i (t) + T (t)− P (t) ci (t)

∫ 1
0
1Jm (j)ϕjdj

]
+λ̂

i

2 (t)
[
Pk (t) di (t)− P (t) ci (t)

∫ 1
0
1Jd (j)ϕjdj

]

+λ̂
i

3 (t)


∫ 1
0
W i
j (t)hij (t) dj + r (t)Pk (t) [ki(t)− di(t)] + rd (t)Pk (t) di (t)

+M i (t) + T (t) +R (t)Bi (t)− Pk (t) γ
(∫ 1

0
1Jd (j) dj

)
− Pk (t)

∫ 1
0
φ
2

[
W i
j (t)

πW i
j (t−1)

− 1
]2
dj

−P (t) ci (t)−M i (t+ 1)− Pk (t) ki (t+ 1)


 ,
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and the first order condition for the choice of ci (t) is given by

(17) uci (t) = P (t)

[
λ̂
i

3 (t) + λ̂
i

1 (t)

∫ 1

0

1Jm (j)ϕjdj + λ̂
i

2 (t)

∫ 1

0

1Jd (j)ϕjdj

]
.

The remaining first order conditions (with the exception of the multipliers) are identical to

the generalized problem.

Deriving the aggregate price and consumption demand equations begins with the claim

(and verification) that the problems above are equivalent. This claim implies that the mul-

tipliers are equivalent (e.g. λ̂
i

3 = λi3). Use (10) and (11) to solve for λ
i
1 (t) and λi2 (t) . This

requires repeated use of (2) and integrating both sides with respect to j.

λi1 (t) = ucij (t)

[∫ 1

0

ϕjPj (t)1−$ dj

] 1
$−1

− λi3 (t) , ∀j ∈ Jm(18)

λi2 (t) = uci
j′

(t)

[∫ 1

0

ϕj′Pj′ (t)
1−$ dj

] 1
$−1

− λi3 (t) , ∀j′ ∈ Jd(19)

Substitution of these multipliers into (17) results in

(20) uci (t) = P (t)

 λi3 (t) +

[
ucij (t)

[∫ 1
0
ϕjPj (t)1−$ dj

] 1
$−1 − λi3 (t)

] ∫ 1
0
1Jm (j)ϕjdj

+

[
uci

j′
(t)
[∫ 1
0
ϕj′Pj′ (t)

1−$ dj
] 1
$−1 − λi3 (t)

] ∫ 1
0
1Jd (j)ϕjdj

 .

Since Jm and Jd span the set of goods, λi3 (t) and uci (t) drops out leaving

(21) P (t) =

[∫ 1

0

ϕjPj (t)1−$ dj

] 1
1−$

.

Verifying that the multipliers are equal (and the problems are equivalent) can be done by

verifying that P (t) ci (t) =
∫ 1
0
Pj (t) cij (t) dj. Using only the generalized problem, replacing

either λi1 (t) in (10) with its expression in (18) or λi2 (t) in (11) with its expression in (19)
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results in (
ci (t)ϕj

) 1
$ = cij (t)

1
$ Pj (t)

[∫ 1

0

ϕjPj (t)1−$ dj

] 1
$−1

.

Raising both sides to the power $, rearranging terms, integrating both sides with respect to

j, and using (21) verifies the result and delivers

(22) cij (t) =

(
P (t)

Pj (t)

)$
ϕjc

i (t) .

It is assumed for simplicity that the differentiated consumption goods are perfect com-

plements (i.e. $ → 0) and the consumption weights are chosen to deliver an ordinal ranking

of consumption types. Letting ϕj = 2j, equations (21) and (22) become

P (t) =

∫ 1

0

(2j)Pj (t) dj,(23)

cij (t) = (2j) ci (t) .(24)

(24) is equation (3) in the text.

Therefore, the price index is a weighting of differentiated prices, and the demand for each

good is its weighted contribution to total consumption. These simplifying assumptions on (2)

reduce the general preferences considered here to those considered by Freeman and Kydland

(2000) and Dressler (2007). Note the smaller the value of j, the smaller the contribution

cij (t) is to ci (t).

Under the aggregated problem, household optimization is characterized by the binding
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constraint set and the Euler equations

uci (t) Ψi (t) = βE (t) r (t+ 1)uci (t+ 1) Ψi (t+ 1) ,(25)

uci (t) Ψi (t) = βE (t)
1 +R (t+ 1)

π (t+ 1)
uci (t+ 1) Ψi (t+ 1) ,(26)

uhij (st) ξhj (st)

(
Wj (st)

W i
j (st)

)ξ
= uci (t) Ψi (t)

 (1− ξ)hj (st)
W i
j (st)

P (st)

(
Wj(st)

W i
j (st)

)ξ
−φ
[

W i
j (st)

πW i
j (st−1)

]
W i
j (st)

πW i
j (st−1)


+βEtuci (t+ 1) Ψi (t+ 1)

[
φ

[
W i
j (st+1)

πW i
j (st)

]
W i
j (st+1)

πW i
j (st)

]
, ∀j(27)

and

(28) R (t) = (r (t)− rd (t)) +
γ

2j∗i (t) ci (t)
,

where

(29) Ψi (t) =
[
1 + j∗i (t)2R (t) +

(
1− j∗i (t)2

) (
r (t)− rd (t)

)]−1
.

Using (9) and r (t) π (t) = 1 + R (t) , it is easy to show that the first-order condition for the

household’s choice of j∗i (t) is

[
1 + Γd̄(t)θ + γ

2j∗i(t)ci(t)

]
r(t)

= π(t),

suggesting that the optimal choice for the composition of money balances is chosen such

that the costs of use for money and deposits are equated. This concludes the endogenous

derivation of j∗t eluded to in footnote 11 of the main text.
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Model Solution

The solution methodology described in this appendix follows Lubik and Schorfheide

(2003) and their extension of Sims (2001). After removing all multipliers from the household’s

first-order conditions and imposing symmetry, the normalized system of equations comprising

the dynamic solution are given by

uc (t) Ψ (t)−

βE (t)
P (t)

P (t+ 1)µ (t+ 1)
uc (t)

(
1 +

γ

2j∗ (t+ 1) c (t+ 1)
+ Γd (t+ 1)θ

)
Ψ (t+ 1) = 0

uc (t) Ψ (t)− βE (t) r (t+ 1)uc (t+ 1) Ψ (t+ 1) = 0

uh (t) ξh (t) + uc (t) Ψ (t)

[
(1− ξ) W (t)h (t)

P (t)
− φ

(
µ (t)W (t)

πW (t− 1)
− 1

)
µ (t)W (t)

πW (t− 1)

]
− ...

βE (t) Ψ (t+ 1)φ

(
µ (t+ 1)W (t+ 1)

πW (t)
− 1

)
µ (t+ 1)W (t+ 1)

πW (t)
= 0

z (t) = κz + ρzz (t− 1) + εz (t)

µ (t) = κµ + ρµµ (t− 1) + εµ (t)

z (t) kα (t)h1−α (t) + (1− δ) k (t) =

c (t) + k (t+ 1) + φ

(
µ (t)W (t)

πW (t− 1)
− 1

)2
+ Γd (t)1+θ + γ (1− j∗ (t))

1

P (t)
= j∗ (t)2 c (t)

d (t) =
(
1− j∗ (t)2

)
c (t)

r (t) = αz (t)

(
h (t)

k (t)

)1−α
+ 1− δ

W (t)

P (t)
= (1− α) z (t)

(
k (t)

h (t)

)α

where Ψ (t) =
[
1 + γj∗(t)

2c(t)
+ Γd (t)θ

]−1
. After the above system is log-linearized around the

model’s steady state, the dimension of the system is reduced by using the bottom five

equations to remove {c (t) , h (t) , j∗ (t) , r (t) , d (t)}. The remaining five equations (and six
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identities) comprise the linear rational expectations model and can be represented in the

canonical form:

(30) Ξ0s (t) = Ξ1s (t− 1) + Υε (t) + Πϑ (t)

where

s (t) = [k (t+ 1) ,W (t) , P (t) , z (t) , µ (t) , E (t) k (t+ 2) , E (t)W (t+ 1) , E (t)P (t+ 1)]′

ε (t) = [εz (t) , εµ (t)]′

ϑ (t) = [k (t+ 1)− E (t− 1) k (t+ 1) ,W (t)− E (t− 1)W (t) , P (t)− E (t− 1)P (t)]′

Solving the model requires the use of the generalized Schur decomposition (QZ) of Ξ0

and Ξ1. This results in matrices Q, Z, Λ and Ω such that QQ′ = ZZ ′ = In, Λ and Ω are

upper triangular, and Ξ0 = Q′ΛZ and Ξ1 = Q′ΩZ. Defining $t = Z ′s (t), premultiplying

(30) by Q results in

 Λ11 Λ12

0 Λ22


 $1t

$1t

 =

 Ω11 Ω12

0 Ω22


 $1t−1

$1t−1

+

 Q1·

Q2·

 (Υε (t) + Πϑ (t))

where, without loss of generality, the system has been partitioned such that the lower blocks

of Λ, Ω and Q correspond to the portion of the system delivering unstable eigenvalues. In

other words, the lower block contains all equations in which the ratio between the diagonal

elements of Ω and Λ are greater than unity.

This ‘explosive’block is written as

$2 (t) = Λ−122 Ω22$2t−1 + Λ−122 Q2· (Υε (t) + Πϑ (t)) .

A non-explosive solution of the model requires $2 (t) = 0∀t ≥ 0. This is accomplished by
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choosing$2 (0) = 0 and for every vector ε (t) the endogenous forecast error ϑ (t) that satisfies

(31) Υ∗ε (t) + Π∗ϑ (t) = 0

where Υ∗ = Q2·Υ and Π∗ = Q2·Π. If the number of endogenous forecast errors is equal to

the number of unstable eigenvalues, then (31) uniquely determines ϑ (t). If the number of

endogenous forecast errors exceeds the number of unstable eigenvalues, then the system is

undetermined and sunspot fluctuations can arise.

Using the singular value decompositionΠ∗ = UDV ′, a general solution for the endogenous

forecast errors is given by

ϑ (t) =
(
−V·1D−111 U ′·1Υ∗ + V·2M1

)
ε (t) + V·2M2ζ (t)

where M1 and M2 govern the influence of the sunspot shock.

Assuming Ξ−10 exists, the solution of the model takes the form of a law of motion for the

endogenous variables

(32)

s (t) = Ξ−10 Ξ1s (t− 1) +
[
Ξ−10 Υ∗ − Ξ−10 Π∗V·1D

−1
11 U

′
·1Υ
∗]ε (t) + Ξ−10 Π∗V·2 (M1ε (t) +M2ζ (t))

]
.

Setting M2 = 1 results in the interpretation of ζ (t) as a reduced-form sunspot shock. De-

termining the value for M1 requires choosing one of two alternative identification schemes.

If one assumes that the effects of fundamental and non-fundamental shocks on the forecast

error are orthogonal to each other, then M1 = 0. Otherwise, M1 is chosen such that the

impulse responses of the model (∂s (t) /∂ε (t)) are continuous at the boundary between the

determinacy and indeterminacy regions. Under indeterminacy, the impulse response is given

by

B1 +B2M1 =
(
Ξ−10 Υ∗ − Ξ−10 Π∗V·1D

−1
11 U

′
·1Υ
∗)+ Ξ−10 Π∗V·2M1.
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For a corresponding determinacy solution, the impulse response is given by

B̃1 = Ξ̃−10 Υ̃∗ − Ξ̃−10 Π̃∗Ṽ·1D̃
−1
11 Ũ

′
·1Υ̃
∗

where a tilde denotes that a different point in the parameter space is needed to alter the

model dynamics. To get the indeterminate impulse responses as close as possible to the

determinate ones, M1 is computed by applying the least squares criterion

M1 = [B′2B2]
−1
B′2

[
B̃1 −B1

]
.

This result is substituted in (32) while maintaining M2 = 1.

Calibration Exercise

Let Φ denote a vector of standard deviations calculated from data, and Φ (Θ) denote

the corresponding calculations from a simulation of the model where Θ denotes the vector

of parameters to be calibrated. The parameter vector delivered by the calibration exercise

is that which minimizes

(Φ (Θ)− Φ)′Σ (Φ (Θ)− Φ) ,

where Σ is an identity matrix.

The calibration exercise chooses Φ to be a 3 × 1 vector consisting of the pre-1984:1

standard deviations of real output, the monetary base and M1 (the data), and Θ is a 3× 1

vector of standard deviations of the exogenous shocks of the model (the parameters). Note

that minimizing the above expression would be equivalent to a simulated method of moments

exercise if Σ were replaced by a weighting matrix that corresponds to the inverse of the

variance-covariance matrix of Φ.
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